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1 Introduction and preliminaries.

It is well known that the reconstruction conjecture for digraphs and, in particular, for tournaments
has been shown to be false by Stockmeyer [ST.1, ST.2]. Thence many questions in the reconstruction
problem for tournaments still remain to be solved.

The main challange is, of course, to find a characterization, if any, of reconstructable tournaments
and to this extent partial results may be of some interest provided they significatively enlarge either the
class of reconstructable tournaments or the class of non-reconstructable ones. Also the reconstruction
of combinatorial properties and invariants of tournaments may turn out to be useful.

Results of this kind may be found in [B.-P., D.M.-G., G1, G2, H.P., M., S.0, S.1, S.2, V.].

In the present paper we consider all the already, given pairs of non-reconstructable tournaments
and investigate which of them satisfy certain combinatorial properties that seem to be related in some
way to the reconstruction problem.

From the obtained results and from some remarks on well known classes of reconstructable tour-
naments new questions and problems arise and we formulate them in the concluding section.

We recall that pairs of non-reconstructable tournaments were found of order 3.4,5,6 (4 pairs), 8 (2
pairs), 2" +2". n > 3,m > 0.

For a complete list of non-reconstructable tournaments of order n > 8 one should refer to [ST.0]
and to [G.2] as well.

In the list given in [ST.0] one pair of order 6 is missing. In fact the tournaments Mg, M2 of figure 1
in [G.2] which are also draff in the book of Moon [MO] on page 94 (row 3 column 2 and row 4 column
2, respectively), constitute a counterexample not listed in [B. -P., Stock 0]. This omission is surprising
since Beineke and Parker apparently used the list of non-isomorphic tournaments of 6 vertices in [MO]
and their default does not depend on an evident mistake in the book of Moon, where the tournament
draft on row 1 column 1 of page 95 is isomorphic to the one pictured in row 4 column 2 page 93. The
missing tournament in the list of [MO], with score vector (1, 2, 2, 3, 3, 4), can be obtained from the
one in row 1 column 2 page 95 by changing the orientation of perimetral arcs of the square draft in
the middle.

The counterexamples constructed by Stockmeyer in [ST.2] are described in the beginning of next
section.

A compendium of the known classes of reconstructable tournaments can be found in [G.2].

For the definition of cards, hypomorphisms and the formulation of various reconstruction problems,
that throughout this paper will be referred to vertex-reconstruction, we shall use the standard notation
following [N.-W].

Now we recall some definitions and results we shall need later. For further details see [B.-R.,G2,
K.-T.-Go.]. We denote by T, (H,) a (hamiltonian) tournament with n vertices and by C,, a cycle in
T, with r vertices as well as the subtournament with the same vertices; the same simbols will be used
to denote the corresponding sets of vertices.

If x,y € T,,,x — y means that  dominates y and we write A — B, A, B C Ty, if every vertex of A
dominates every vertex of B in 7,. A singleton will be usually identified with its only element. T'r,
denotes the standard transitive tournament with n vertices and HR(m),m > 1, the highly regular
tournament whose vertices vy, ..., Vam+1 can be ordered in such a way that every vertex v; dominates
exactly the vertices with indices i + 1,...,7 + m (mod 2m+1). We say that a vertex x cones a
subtournament R in T, if either x — R or R — 2 in T,,.

An e-component of T, is a subtournament S which is coned by every vertex of T,, — S; the vertices
of S are then said to be equivalent. Single vertices and 73, are trivial e-components.

We say a tournament 7T, is simple if it has no non-trivial e-component; otherwise it is compound.

Every tournament 7, can be partitioned into e-components S, ..., S™ other than T},: the tour-
nament @), with vertices vy, ..., v, such that v; — v; iff St — S7 is a quotient of T},. Then T}, is
isomorphic to the composition tournament @Q,,(S', ..., S™). Every tournament T,,,n > 2, has exactly
one simple quotient Q,,: this is isomorphic to T3 if T}, is not hamiltonian; otherwise it is determined
by the unique partition of 7}, into maximal e-components S',..., ™ m > 3, other than T}, and it is
hamiltonian.
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A vertex x € H, is neutral if the relative card H,, — z is hamiltonian. A tournament 7, is strongly
2-connected if all its cards are strong; hence the class of strongly 2-connected torunaments is closed
under hypomorphisms.

A cycle C. in a strong tournament H,, is minimal if it is not coned in H,, and every cycle Cy, s < 7,
whose vertices are in C,. is coned in H,.

H,, is normal if it has just one minimal cycle. The cyclic characteristic of H,, is the minimal length
of the non-coned cycles.

Hamiltonian simply disconnected tournaments H, can be characterized by either one of the
following equivalent conditions: (i) a 3-cycle is coned in H, iff it is included in a non trivial
e-component; (ii) the simple quotient of H,, is the highly regular tournament H R(m) for some m > 1.

2 Cyclic characteristic on non-reconstructable tournaments.

For each non-negative integer n, let A,, be a tournament with vertices v;, 1 < i < 2", and dominance
relations given by

v; —»wv; iff odd (j —i) =1(mod 4), for i# j.
iff Ja€T,r >0 suchthat j =i+ (da+1)2".

Let m,n be non-negative integers, such that 0 < m < n. Consider the tournament D,, ,,, whose
vertices are those of A,,v1,...,von, and those of Ay, voniq,. .., vVaniom (distinct vertices correspond
to distinct indices). The dominance relations among the first 2" vertices remain the same as in A,,
and among the last 2™ vertices are the same as in A4,,. The even (odd) vertices in A,, dominate the
even (odd) vertices in Ay,.

We also consider the tournament Dy .. having the same vertex-set as Dp, ;,, reverting the domi-
nance between the vertices in 4, and the vertices in A4,,

Observe, that D, ,, and Dy, ,,, are both hamiltonian tournaments, for n > 2. These tournaments,
with a different notation, were constructed in [Stock 2] and, for the case 0 < m < 1, in [Stock 1]. In
those papers, Stockmeyer has proved the following results.

Proposition 2.1. For all positive integers m,n, such that 0 < m < n we have:

(i) m =0 = Dnm and Dy, ,, are self-complementary;
(ii) m > 1 = Dpm and Dy, ,, are complements of each other;
(11i) Dy and D}, . are non-isomorphic.

n,m
(iv) Dpm and Dy, ., have the same cards, that is, they are hypomorphic. Moreover, the card Dy, m —
Vgnyk, 1—2" <k < 2™, is isomorphic to the card Dy, ,, — vy, where k' = 2" +2™ 41—k (mod
2n 4+ Qm). 0O
We say a vertex in Ay, Dy or Dy, is even (odd) if its index (in the description given above) is
even (odd).
Lemma 2.1. Let n > 2, then we have:
(i) There exist non-coned 3-cycles in A,, with vertices that are not all even neither all odd, if and

only if n < 3;

(ii) The vertices v1,vs, vs3,vs form a non-coned 4-cycle in A,.
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Proof. (i) For any considered 3-cycle in A, it is possible do find an (unique) ordering of its vertices
(vi = v; = vg) such that 3r > 0,3, B € Z,a + 5 odd, so that

i=k+(48+1)2"
j=k— (da+1)2".

We observe that for all k£, with 1 < k < 2", there exists such a 3-cycle iff n > 3. If » > 0, then the
three vertices are all even or all odd.
Let r» = 0 and denote by C(ijk) the associated cycle; in this case i = j #Z k (mod 2).
A vertex v, exists which dominates C(ijk) iff for some 1 < 2 < 2" and for some 2, 2, 2, € Z the
following conditions are satisfied
r=1—2(4z; +1)
x=j—4(4x; +1)
x=k— (4dxp+1).

Hence such a vertex v, exists iff 3x; € Z such that 1 < j — 4(4a; + 1) < 2", and this happens iff j
satisfies one of the conditions 5 <7 <2"or 1 <j <2" —12.
Every index 1 < j < 2™ satisfies such a condition iff n > 4. Therefore in A,,, with n > 4, every
3-cycle with vertices which are not all even nor all odd it is coned.
Similarly, there exists a vertex v, which is dominated by C(ijk) iff 31 <y < 2" and 3y;,yj, yp € Z
such that
y=1i+44y; +1)
y=J+2(4y; +1)
y=k+4y, + 1.

Hence such a vertex v, exists iff 3y; € Z such that 1 <1+ 4(4y; + 1) < 2", and this happens iff
i satisfies one of the conditions 1 <147 < 2" —4 or 13 < ¢ < 2"™. In this case, we also have that every
index 1 <17 < 2™ satisfies one of these conditions iff n > 4.

If n = 2, the only 3-cycles in Az, C(241) and C(134), are non-coned and their vertices are not all
even nor all odd.

If n = 3, the non-coned 3-cycles in As having vertices which are not all even nor all odd are
C(712),C(823),C(716),C(827).

(ii) Excluding the case n = 2, which is trivial, with the notation introduced above, one may easily
verify that if C'(241) — v, and C(134) — vy, then it must exist ¢, € Z such that

y= b+4+4t
and
y= 4+4t
but this is impossible.
Similarly, v, — v;, for ¢ = 1,...,4, implies 3 s, s’ € Z such that
r= 3—4s
and
r= 2—4¢

which is also impossible.

Lemma 2.2. Let 1 <p,p',d,d" <2",n >4, with p,p" even and d,d’ odd. Then we have in A,
(i) vp = vg = 31 < d,p < 2",d odd, P even, such that v — {vp,va} = V5 ;
(i) vo = vy = 31 < P, d < 2", p even, d odd, such that vy — {va, vy} = v; .

Proof. For every fixed even index 1 < p < 2", all the arcs from v, to an odd vertex are obtained in
correspondence to the indices 1 < d < 2" obtainable by the relation

d=p+4k +1, for some k € Z.
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If we consider any «a, 8 € Z such that

1<p-da—1<2n o 1<d+48+1<2n
a+ k even a B+k even

the odd index d = p — 4a — 1 determines a vertex which dominates {v,,v;} and the even index
D =d+ 458 + 1 determines a vertex which is dominated by {vp, vq}.

Similarly, all the arcs from an odd vertex to an even vertex can be obtained by fixing an odd
integer d’ and determining an even integer satisfying

p' =d +4h+ 1, for some h € Z.
Any solutions i, j € Z for

1<d —4i—-1<27 and 1<p +4j+1<27
i+ h even j+h even

determine, by taking )
p=d —4i—1, andd=p' +4j+1

the required indices in the second implication.

U
Proposition 2.2. Letn >2 and 0 < m < n.
Then
{’I’L, m} N {17 2, 3} 7é ¢ g CC(Dm,n) =3,
{n,m}nN{1,2,3} =¢ & cc(Dpm) =4
Proof. Four cases have to be considered:
m=0 and 2<n<3. (1)

By lemma 2.2 there exist non-coned cycles in A,, with vertices which are not all even nor all odd;
such cycles cannot be coned by vonyq either. Therefore, cc(Dy o) = 3.

m =20 and n>4. (2)

The cycles in A,, which are non-coned in A,, their vertices are all even or all odd; then by lemma
2.2, they are coned by vani1. On the other hand, any 3-cycle having veny1 contains an arc in A,, from
an even to an odd vertex; then by lemma 2.3, such vertices certainly are dominated by an odd vertex
which, obviously, dominates the entire cycle. From lemma 2.2 (ii) it follows that ce(Dy0) = 4.

1<m<3. (3)

From lemma 2.2 (i) it follows that in D,, ,,, there exist non-coned 3-cycles with vertices in A,,, if
2 <m < 3. If m = 1. Consider any odd vertex vg in A, it is clear the 3-cycle through vy and vertices
in A,, is non-coned in D,, ,,. Therefore cc(D,, ) = 3, in any case.

m > 4. (4)

From lemma 2.2 it follows that every 3-cycle contained in A, or in A,, is coned. If C is a 3-cycle
with an odd vertex in A,, and an arc v, — vg (with p even and d odd, obviously) in A,, then by
lemma 2.3 there exists an odd vertex in A,, dominating the entire cycle C.

Considering all the other analogous cases we conclude that every 3-cycle is coned. Again by lemma
2.2, it follows that cc(Dp, ) = 4.

O
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Corollary 2.1. For all intergers m,n, with 0 < m < m, we have
cc(Dy, 1) = ¢c(Dpm)-

Proof. If m > 1, the result follows from Proposition 2.1 (ii).

If m =0 and n < 3, by lemma 2.2 there exists a non-coned 3-cycle in Dj, ;, hence cc(Dj, 1) = 3 =
cc(Dp,1).

Let us consider then n > 4. From lemma 2.2, it follows that every 3-cycle in A, is coned in Dj, ;.
Let C be a 3-cycle through vany1; such a cycle contains an arc vy — vy, with d’ odd and p’ even,
whose vertices (by lemma 2.3) are dominated by an even vertex in A,,, which obviously dominates the
entire cycle C. Therefore by lemma 2.2 (ii) it follows that cc(D}, o) = 4 = cc(Dn)- O

Remark 2.1. (i) All the known pairs of hypomorphic tournaments which are not isomorphic, of
order 5, 6, 8, which are not included in corollary 2.5 consist of tournaments having the same cyclic
characteristic, namely 3.

(ii) The counterexamples of order 3 and 4 consist of pairs of tournaments in which only one is hamil-
tonian.

3 Other properties of non-reconstructable tournaments

Proposition 3.1. Let m,n be nonnegative integers, such that 0 < m <n and p =2"+2" > 6. Then

Dy and Dy, ., are strongly 2-connected tournaments.

Proof. First of all observe that for n > 3 every vertex v; dominates v;11,v;+2 (where i + 1 and i 4 2
are reduced mod p). For n = 2, this is also true for v1,v2 and, we have v; — v;41, for all 1 <i < 4.

Let v € Dy . If v = vony; in Ay, A, is a cycle (observe that n > 2) which is not coned by any
vertex in Ap,, hence it can be extended to a hamiltonian cycle in the card Dpm —v. If v =v; in A,
and n > 3, A, — v is a cycle which is not coned by any vertex in A,,, hence it can be extended to a
hamiltonian cycle in the card Dy, ,, —v.

On the other hand let us suppose n = 2, and hence m = 1. In A,, — v there exists an odd vertex
such that with vs and ve they form a cycle which is non-coned in the card Dy ; — v, which is therefore
hamiltonian.

Now it is a trivial consequence of Proposition 2,1 (iv) that every card in Dj, ,, satisfying the
hypothesis, it is also hamiltonian. O

Remark 3.1. The non reconstructable tournaments of order 5 and 6 which are distinct of Dy and
D3 are the only known tournaments which are not strongly 2-connected.

Proposition 3.2. Let m,n be non negative intergers such that 0 <m <n and p = 2" 4+ 2™ > 6.
Then Dy m and Dy, . are simple tournaments.

n,m

Proof. Let X be an e-component of D, ,, and let v, # vy, be two distinct vertices in X.

(1) Let us suppose 1 < z,y < 2"
-z
If = y (mod 2), then the vertex relative to z = x + y? does not cone {v;.vy}, so v, € X. We
can assume, without loss of generality, z # = (mod 2), changing y if necessary.
It is easy to see that
x—t=(4da+1)2*
y—t=(4b+1)2°8 L am
z—t=(4c+1)27
it does not admit any integer solution, that is, there isno ¢, with 1 <t < 2", such that vy — {vg, vy, v, }.
Similarly, there is no ¢, with 1 < ¢ < 2". Such that {vy, vy, v.} — vr.
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In conclusion we have v; € X, for all 1 <t < 2", that is, A, € X. Since none of the vertices in
Am cones Ay, it follows that X = Dy, p,.

If 2 £y (mod 2) then A,, C X. Then if m > 1, it follows that 4, C X, that is, X = Dj, .
On the other hand, if m = 0, hence n > 3, assume that y is even. If y +1 # 2 (mod 2), then
Uy — Uy41 —> Uani1, SO that vyy1 € X and, as before, X = Dpo. f y+ 1 =2 (mod 2) and y > 3
(otherwise, < n — 2) then v, — vy_2 — vy (otherwise, v, — vz42 — vy), and hence vy_o € X
(otherwise, vy,—o € X) and, as before it yields in any case X = Dy, .

(2) If we suppose 2" +1 < z,y < 2™ 4+ 2™ (with m > 0 and n > 2, of course). We proceed as in the
previous case and without any exception we get X = Dy, 1.

(3) Finally, let us suppose 1 <2z < 2" and 2" +1 <y < 2™+ 2™,

If £ = y (mod 2), then vy — vpq2 — vy, for & < 2"—2. Otherwise 2 > 2 and hence vy — Vp—1 — Vg.
In any case there exist two disinct vertices of A, in X. Therefore, as it was shown before, we have
that X = Dy, .

If x # y (mod 2), then v, — vy41 — vy, for @ < 2"—1. Otherwise 2 > 3 and hence vy — vVz_2 — V.
In any case there exist two distinct vertices of A, in X and again X = D,, 1. O

Remark 3.2. (i) All known non-reconstructable tournaments are simple, with the only exceptions:
DQ’O, of order 5, and Cg(Tl, TQ,T?”g), C3(T1, TT3, TQ), of order 6.

(ii) For m > 6, the known pairs of non-constructable tournaments are formed by tournaments which
are either both simple or both compound.

(iii) The simple quotient of every known non-reconstructable hamiltonian tournament is a non-
reconstructable tournament.

4 Concluding remarks and problems.

The results given in section 2 suggest that the cyclic characteristic of hamiltonian tornaments is
in some way related to reconstructability problems. Indeed it is not clear if some kind of direct link
exists between reconstructable hamiltonian tournaments and their cycle characteristic, but actually,
no non-reconstructable tournament H is known with cc(H) > 4.

On the other hand we believe that the more evident trend that hypormophic strong tournaments
have the same cyclic characteristic in the considered known situations may be extended to all hamilto-
nian tournaments, so that we conjecture that the cyclic characteristic of any hamiltonian tournament
is reconstructable.

We note that the class H? of strongly 2-connected tournaments is closed under hypomorphisms,
i.e. every tournament hypomorphic to any given strongly 2-connected one is also strongly 2-coonected,
since its cards all are hamiltonian. The same is true for the class % — H? of hamiltonian non-strong
2-connected tournaments.

The results of section 3 show that surely, we cannot say that the elements of H? can be recon-
structed. As for the H —H? one could ask whether it has non-reconstructable tournaments with more
than 7 vertices or if every element H, € H —H?,n > 7, can be reconstruceted from its cards.

Other questions arise from results of section 3 about the simple quotient of a tournament: Can
any tournament be reconstructed provided its simple quotient is reconstructable, or, equivalently, is
it true that the simple quotient of every non-reconstructable tournament is not reconstructable?

Such a problem becomes more intriguing if we look at the already given classes of reconstructable
torunaments. In fact the reconstructable tournaments exibited in [H.-P.] are exactly those having
as simple quotient the tournament with 2 vertices which is, of course reconstructable. The class of
simply disconnected tournaments, that have been reconstrcutable in [G.1, V], contains all tournaments
whose simple quotient is the highly regular tournament HR(m), m > 2, which is reconstructable.
Eventually in [G2] all tournaments are reconstructable whose simple quotient belongs to the class of
reconstructable tournaments, namely the normal tournaments of order n < 4, considered in [D.M.-G.].
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We further remark that for every n > 6 and for every pair of hypomorphic tournaments H,, H}
already considered we have that H,, is simple if and only if H is simple. Consequently we ask wether
“being simple” is a hypomorphical property for all tournaments.

We conclude our remarks by noting that the tournaments Mg and Mg of figure 1 in [G2], that
constitute the missing pair in the list of counterexamples in [B.P., St.0O], are converse of each other,
which confirms the trend already remarked in [B.-P., St.0] for non-reconstructable tournaments of
even order.
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