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6-Tournaments having a minimal cycle of length four
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Resumo: Neste artigo apresentamos um estudo, usando os conceitos de ciclos mini-
mais, vértices neutrais e nao neutrais, dos torneios hamiltonianos de ordem 6 que
possuem um ciclo minimal de comprimento 4. Mostramos que ha 5 desses torneios
de ordem 6, mas somente 1 tem o niimero maximal de vértices nao neutrais.
Palavras-chave: Digrafos; Torneios Hamiltonianos; Ciclos Minimais; Vértices Neu-
trais e Nao-neutrais; Torneios de Douglas e de Moon.

Abstract: In this paper we thoroughly study, using the concepts of minimal cycles,
neutral and non-neutral vertices, the hamiltonian 6-tournaments having a minimal
cycle of length four. We show there are five of those 6-tournaments, but only one has
the maximal number of non-neutral vertices.

Keywords: Digraphs; Hamiltonian Tournaments; Minimal Cycles; Neutral and Non-
neutral Vertices; Douglas and Moon Tournaments.
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1 Introduction

In a hamiltonian tournament H,,, a vertex z is called a neutral vertex if H,, — z is still a hamiltonian
tournament; otherwise, the vertex z is said to be non-neutral. These two concepts are very important
in order to obtain structural characterization for some classes of hamiltonian tournaments, in terms of
their non-coned cycles and minimal cycles. Several new results have already been obtained following
this approach see [9, 10, 11]. In [13] we throughly have studied the 5-tournaments. In this paper we
analyse the special case of the 6-tournaments having a minimal cycle of length 4.

In section 2, we present the basic concepts and some interesting results about tournaments and their
quotients. We also recall the concepts of non-coned cycles, minimal cycles, neutral and non-neutral
vertices, and some results stablishing relation among them and their main properties. We follow the
notation and the definitions presented in [1] and [13]. We recall that this approach originates in the
use of the Regular Homotopy Theory, introduced by Davide C. Demaria (see [3, 4, 5, 6, 7]). We shall
remark the Regular Homotopy Theory for Digraphs is, in our opinion, the most correct and natural
homotopy theory that should be used, since the regular maps are pre-continuous maps as it was shown
in [12].

In section 3 we thoroughly study the 6-tournaments having minimal cycles of length 4. The
classification of those tournaments employs the standard theory on the topology of graphs, as well as
the concepts of coned and non-coned cycles. We also devised a new structure, the associated graph of
3-cycles of a hamiltonian tournament, that helps on distinguishing a couple of different hamiltonian
tournaments where the usual topological characters coincide. This new structure will be explored in
a forthcoming paper.

As a consequence of Lemmas 3.2, 3.3 and Remark 3.4, as well as the discussion in section 3, we are
able to prove Theorem 3.6. This is the main theorem of this work, and states a classification for the
hamiltonian 6-tournaments having minimal cycles of length four in terms of their number of minimal
3-cycles and 4-cycles and also the number of neutral vertices.

2 Tournaments, quotients, minimal cycles, neutral and non-neutral
vertices

Let T be a tournament. If there is an arc from a vertex z to a vertex y in 7', we say that x dominates
y and denote it by z — y. If A and B are two subtournaments of 7" and every vertex of A dominates
each vertes of B, then we say that A dominates B and denote it by A — B.

The out-neighbourhood Nt (x) of a vertex z is the set of all vertices of T dominated by z. The in-
neighbourhood N~ (z) of a vertex x is the set of all vertices of 7' which dominate z. The neighbourhood
N(z) is the union N*(z) U {z} UN~(z).

The number of vertices in the out-neighbourhood (in-neighbourhood, respectively) of z is the
outdegree d*(x) (indegree d—(z), respectively) of z. In case N is a subtournament of 7', we shall
denote by df;(z) and dy(x), the outdegree and the indegree of x relative to N, respectively.

If T is a tournament of order m we denote it by T,, if T}, is hamiltonian we denote it by H,,,. By
C, usually we denote a cycle, Cy : 1 — -+ - — x, — =1, with r vertices, as well as the subtournament
(C;) spanned by its vertices. The singleton z, with € T}, and the spanned subtournament (z) is
simply denoted by z.

If C is a cycle in a tournament T and a vertex = € T —C, we denote by d(z) (dz(z), respectively)
the outdegree dj,(z) (indegree dy,(z), respectively) relative to M = (C U {z}).

Trp is the transitive tournament of order m (that is, z; - z; < i < j) and T'r}, its dual. A
vertex x in T}, cones a subtournament R if and only if v - R or R — v in T},. Otherwise, we say
that R is non-coned in Ty,.

A subtournament S of Ty, is an e-component of Ty, (and its vertices are called equivalent) if S is
coned by every vertex z in T, —S. The whole tournament 7},, and the single vertices are called trivial
e-components.

Every tournament T, can be partitioned into disjoint e-components S1,...,S™, which can be
considered as the vertices (wy, ..., wy, respectively) of a tournament @y, so that T, is the composition
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Qn(SY,...,8™) of the e-components S, ..., S™ with the quotient Q,,. In other words, T}, = S'U...US™
and x — y in T}y, if, and only if, z — y in some S? or z € §7, y € S* and w; — wy (that is, $7 — S¥)

(see [2]).

Proposition 2.1. Any quotient tournament Q,, of a tournament Ty, is isomorphic to some subtour-
nament of T, O

Proposition 2.2. A tournament H,, is hamiltonian if, and only if, every one of its quotient tourna-
ments is hamiltonian (or, equivalently, if and only if it has a hamiltonian quotient tournament).

A tournament T}, is simple if it has no non-trivial e-component. That is, if Q,(S?,...,S"), then

m =n or n = 1. If T}, is not simple, then we say it is compound. We say @, is a simple quotient of
T if Ty = Qn(SY,...,S™) and Qy, is simple.

Proposition 2.3. Every tournament Tp,, with m > 2, has exactly one simple quotient tournament
Qn (up to isomorphisms). Moreover:

(a) if T, is not hamiltonian, then n = 2;

(b) if T, is hamiltonian, then n > 3 and the e-components which correspond to the simple quotient
are uniquely determined.

The obvious homomorphism p : Ty, — @, is called the canonical projection.

In [5], Burzio and Demaria introduced the concepts of coned and non-coned cycles in tournaments.
Let H,, be a hamiltonian tournament. A non-coned cycle C' of H,, is said to be minimal non-coned
or, simply, minimal, if the hamiltonian subtournament (C') is non-coned but all its proper hamiltonian
subtournaments are coned in H,,.

A characteristic cycle in Hy, is a minimal cycle with the minimal lenght. This minimal lenght is
called the eyclic characteristic of Hy,, and we denote it by cc(Hy,). The cyclic difference of Hy, is the
positive integer cd(Hy,) = m—cc(H,,). In [5] it was proved that 2 < cd(H,,) < m—3 or, equivalently,
3<cc(Hp) <m-—2.

A vertex z of a hamiltonian tournament H,, is neutral if H,, — x is hamiltonian. Otherwise, the
vertex z is called non-neutral. By v(Hp,) (u(Hm), respectively) we denote the number of all neutral
(non-neutral, respectively) vertices of Hy,. It is easy to see that

v(Hm) + p(Hm) = m,
2 <v(Hp) <m, (1)
0<p(Hm)<m-—2.

A tournament Hy, is normal if it has a unique minimal cycle (namely, the characteristic one).
Equivalently, Hy, is normal if and only if cd(Hp,) = v(Hp) (see [8]).

Remark 2.4. The tournament A,,, with m > 4, having vertex set {a1,...,a,} and such that a; — a;
if and only if j <i—1 or j =i+ 1, is the only tournament with v(A4,,) = 2. It is called the bineutral
tournament of order m (see [5]). The subtournament spanned by {an_i,an,a1,a2} is its maximal
transitive subtournament, formed by consecutive vertices of the hamiltonian cycle. It is easy to see
that ag — -++ — an—1 — a2 is its only minimal cycle (the characteristic one). Hence the bineutral
tournament A, is normal, with cc(4,,) = m —2, if and only if m > 5. The 3-cycle Hj is normal. And
the only hamiltonian tournament Hy is not normal, for it has two minimal cycles and cc(A4) = 3. It
is also known that As is the only normal tournament of order 5.

We have a characterization of the hamiltonian tournaments in terms of non-coned cycles, that was
given by Burzio and Demaria in [6].

Proposition 2.5. A tournament H,,, with m > 5, is hamiltonian if, and only if, there exists a
non-coned n-cycle in Hy,, with 3 <n <m — 2.

We observe that H3z and Hy also contain non-coned 3-cycles, but the condition n < m — 2 is not
satisfied. We now present some important and useful (as we shall see in the applications) properties
of the non-coned cycles, minimal cycles, neutral and non-neutral vertices.
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Proposition 2.6. Let H,, be a hamiltonian tournament. If C' is a non-coned cycle in H,,, then the
vertices in H,, — C are all neutral vertices.

Proof. See [13]. O
This proposition motivates the following definition ([8]):

Definition 2.7. If C is a non-coned cycle in H,,,, the set Po = H,,, — C consists of neutral vertices of

H,,,, which are called poles of C.

Proposition 2.8. Let H,, be a hamiltonian tournament. If N (Q, respectively) is the subtournament
of the neutral (non-neutral, respectively) vertices of H,,, then N = U {P¢ | C non — coned cycle} and
Q =nN{V(C) | C non — coned cycle}.

Proof. Tt follows immediately from the previous proposition. O
We shall now describe the subtournament of the neutral vertices in terms of the minimal cycles.

Proposition 2.9. Let H,,, be a hamiltonian tournament. A vertex x in H,, is neutral if, and only if,
there exists a minimal cycle C in H,,, such that z € Pg.

Proof. In fact, if x is a neutral vertex, then H,, — = is hamiltonian and non-coned. Therefore there
exists a minimal cycle C induced in H,, — z, and z € Pc. The converse is obvious, from the defintion
of poles of C. O

Corollary 2.10. Let H,,, be a hamiltonian tournament. If N (Q, respectively) is the subtournament
of the neutral (non-neutral, respectively) vertices of Hp,, then N = U {P¢c | C minimal cycle } and
Q =N {V(C) | C minimal cycle }.

Proposition 2.11. If Cy,...,C, are non-coned cycles in a hamiltonian tournament H,,, then the
subtournament R = (C1 U...UC,) spanned by their vertices is hamiltonian.

Proof. If R = H,,, then the result is obvious. On the other hand, if R # H,,, then there exists
xz € H,, — R. Hence z is a pole of one of the non-coned cycles, and H,, — x is hamiltonian. If
R = H,, — z, the result follows. If R # H,,, — x, we proceed as before. Since this process has to come
to an end, the result is true. O

We now introduce the following definition:

Definition 2.12. Let T,, be a tournament of order m. If T}, = Tr;(S(l), 2% ,S(")), with T'r} being
the dual transitive tournament of order n, and every component S@) being a singleton or a hamiltonian
subtournament, we say we have a composition in strong components of T,,.

We observe that the tournament H,, is hamiltonian if, and only if, H,, is the only strong com-
ponent. In the case Q = @, that is, in H,, all the vertices are neutral vertices, then N = H,,, hence
obviously hamiltonian. On the other hand, if @ # 0, the situation is not the same as we can see from
the next result.

Theorem 2.13. Let H,, be a hamiltonian tournament. If there is at least one non-neutral vertez in
H,, (that is, Q # 0), then the subtournament N of the neutral vertices of H,, is not hamiltonian, or
H,, is the composition of two singletons and a hamiltonian component H', with a 3-cycle as quotient.

Proof. See [13]. O
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3 6-Tournaments having a minimal cycle of length four

To exhibit those tournaments we adopt a constructive viewpoint, starting on a hamiltonian tournament
H, |H| = 6, with minimal cycle C C H, |C| = 4. The first thing to notice is that there is only one
hamiltonian structure of order four, which can be characterized by two 3-cycles sharing 2 vertices.
Let C; C C be the 3-cycle having 2 vertices of outdegree 2, and Cy C C be the 3-cycle having
two vertices of outdegree 1 (degrees relative to C). Thus, in the figure, C; : 1 -+ 2 — 4 — 1 and
Cy:153-24-1.

10 < 04

20 > O3

Figure 1: The cycle C

There are two vertices in (H — C). Since C is minimal each of the cycles Cj, j = 1,2, must be
coned by at least one of the vertices in (H — C). We claim that each C; is coned by exactly one
of those vertices. For if z € (H — C) cones Cs, let’s say  — Co, then it must be = < (C — Cs),
otherwise C' would be coned by z. In particular  does not conne Cj, but the remaining vertex in
(H — C) does. The other adjacency z < Cj is treated similarly. We can summarize this by writing
H = ({a1,a2} U C), and such that a; cones C; for j,i = 1,2 if and only if j = i.

Analysing the adjacencies between a;, C; and a3, as we will show there are precisely five hamiltonian
6-tournaments with a minimal cycle of length 4. We first consider the following subcases:

(1) If ag — Oy it must be as < 2. The only 3-cycle passing through ay and some vertices of C is
2 — as — 1 — 2, which is coned by 3.

10 < 04
a2 O
\\o . 03
2

Figure 2: Case ag — Cy

(2) If ag < Cy then as — 2. The 3-cycle ag — 2 — 3 — as is coned by 1. The 3-cycle as — 2 —
4 — as is coned by a; if and only if

ad(a1,C1) = ad(a1, a2). (2)

10

A

O4

az O
\\O > 03
2

Figure 3: Case as < Cy
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(3) If a1 — Ci then a1 + 3. The 3-cyle 3 — a3 — 2 — 3 is coned by 4. The 3-cycle3 a1 -1 —3
is coned by as if and only if

ad(az,C2) = ad(az,a1). (3)
(@) < O4
Oa
| ; o—//
2 3

Figure 4: Case a1 — C}

(4) If a1 + Cj then a; — 3. The 3-cycle a; = 3 — 4 — a; is coned by 2.
10 < O4

2 3

Figure 5: Case a1 + C}

We will combine (1) and (2) with (3) and (4) above. Further we will consider the two possible
adjacencies between a; and ag: (i) for a; — az and (¢) for a; + as.

(13.i) The 3-cycle a; — az — 3 — @y is coned by 4. Since condition (3) fails the 3-cycle 3 — a; —
1 — 3 is minimal and the cyclic characteristic of this tournament is 3. We call this structure
H(lz'i), which is characterized by a; — C1, as — C2 and a; — as.

a2 O O a
\\\O } O//
2 3

Figure 6: Tournament H (134

(13.ii) The only difference from the previous one is that as — a;. In particular the 3-cycle 3 — a; —

1 — 3 is coned, like all other 3-cycles. Hence this tournament has cyclic characteristic 4. We
call it H (13-4
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1.6 < O4

a2 O O a1
| ; O//
2 3

(13.44)

[

Figure 7: Tournament H

(14.1) There are no other 3-cycles besides the ones listed above, and they are all coned. The structure
H(449) ig characterized by ay + Cy, ag — Cs and a; — ag. It holds cc(H(l‘“)) =4.

a2 O O a1
| : O/
2 3

Figure 8: Tournament H (144

[

(14.ii) All 3-cycles are coned. The structure H (14.4) is characterized by as — C2, a1 + C1 and a1 + as.
It holds cc(H (14%)) = 4,

a2 O O a1
| ; O/
2 3

Figure 9: Tournament H (14#)

[

(23.i) Condition (2) (which is equivalent to (3) in this case) is satisfyed and all 3-cycles are coned.
This tournament H (234 is characterized by ag + Cs, a; — Cy and ay — as and has cyclic
characteristic 4.
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a2 O [@X4!

LN

Figure 10: Tournament H (23:9)
(23.ii) Conditions (2) and (3) fail, and the 3-cycles ag — 2 — 4 — a2 and a; — 1 — 3 — a; are both
non-coned. This tournament H (234 has cyclic characteristic 3 and is characterized by ag + Ca,
ay — C1 and aq ¢ as.

Y

1O < O14
a2 O [@X41
\\O : O//
2 3

Figure 11: Tournament H (23-i9)

(24.1) Condition (2) does not hold and the 3-cycle as — 2 — 4 — a5 is not coned. This tournament
H 249 ig characterized by az + Cs, a1 < C1, az + a1 and has cc(H(24'i)) =3

10 < O4
az O Qa
\\o S o//
2 3

Figure 12: Tournament H (249

(24.i1) Condition (2) is satisfied and the resulting structure has cyclic characteristic 4, since ag — 2 —
4 — ay is coned. This tournament H(24%) ig characterized by as < Cs, a; < C; and as — ay.
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10 < O4
az O (@531
\\O : O/
2 3

Figure 13: Tournament H (244)

So far we have eight structures which contain all possible hamiltonian 6-tournaments having mini-
mal cycles of length 4. We will identify isomorphisms among some of them, so that only five structures
will be shown to be non-isomorphic.

Lemma 3.1. Let T = {H(ls'“),H(l‘“),H(Qs'i),H(u'ii)}. Then any two tournaments in T are iso-
morphic.

Proof. We pick one of these tournaments, say H 134 ag reference, and reserve the notation ai,as
as well as C for the vertices and minimal 4-cycle used in the contruction of H(13#) from scratch.
Let T € T be arbitrary. We first notice that there is exactly one vertex a;, € T having outdegree 4.
Second, there are two vertices in 7" having outdegree 3, but only one of them, which we call ¢ € T,
is a successor of a5. Thus, a prospective isomorphism ¢ : H (18:4) _y T must send a; to a;- for j = 1,2,
since outdegrees and adjacency relations are preserved by ¢.

Let C' =T — {a}, a5}, and assume for the moment C’ is a cycle (of length 4). There is only one
way to define ¢ on the vertices of C' and such that C' is sent onto C’ isomorphically. Hence ¢ is a
bijection between the sets of vertices of H134#) and T, and a morphism between the subtournaments
(a1,a2) ~ (a},as) and C' ~ C’. Now we verify that adjacencies of a vertex in {aj,a2} and a vertex
in C are preserved by ¢. Let C' = C5 U C] be the union of two 3-cycles, and C} be the one having
two vertices of outdegree 1 relative to C’. Since the 4-cycle C’ is non-coned, and hence minimal for
cc(T') = 4, both of af, al, must conne one of C7, Cj, and an argument used earlier gives us that a} — C']'.
for some indices 7,5 € {1,2} (the proposed adjacency comes from the outer degrees of a},a), which
are greater than or equal to 3).

Suppose by absurd that it holds a5 — C{. Then it also hold @} — Cj and @}, « 3/, where 3' = ¢(3).
But since 3’ is the predecessor of af its outdegree is 3, so 3’ — a). There lies the contradiction for
3’ € ), thus 3’ «+ a). The right adjacencies are then a, — C! and a} — C}. These are the same
adjacencies brought by ¢ from H(13#%) We conclude that H(13%) ~ T as long as C” is a 4-cycle.

Now we exhibit this 4-cycle in each case: for T = H4Y (' isa; — ag — 3 — 4 — ay; for
T=H®) C"is1-say 24— 1;and for T = HZ%) ' is3 5 ag - 2 — a; — 3. This
finishes with the proof. O

Lemma 3.2. The collection U = {H(13) gO3.4) pp(de) pr(2340) p2490Y s constituted of 5 non-
isomophic hamiltonian tournaments of order 6. An arbitrary hamiltonian tournament of order 6 has
a minimal 4-cycle if and only if it is isomorphic to one of the tournaments in U.

Proof. Among the tournaments in I only H(134) and H(144) have cyclic characteristic 4. Since the
former has 6 3-cycles and the latter has 4 3-cycles we see that neither of them is isomorphic to any of
the other tournaments in Y.

The tournament H (23 has eight 3-cycles, namely Cy, Ca, ag — 2 — 3 — a3, 3 — a; — 2 — 3,
as—a; >4 —>az, a3 —>a; —+1—>as, a3 —+2—>4—agand 3— a3 — 1 — 3, the last two of them
being non-coned. Since H(134) and H (249 hoth have six 3-cycles each one we conclude that H (23-4) jg
non-isomoprhic to the other structures in .

We now get to the distinction between H (1349 and H(249), Besides the common number of 3-cycles,
both of them enjoy the same number of 4-cycles (6). The number of non-coned 3-cycles, and 4-cyles, is
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the same in each case. The outdegrees of the vertices follow the pattern 4,3,3,2,2,1. Thus an effort to
show these tournaments are non-isomorphic seem to get down to a direct construction of a tentative
isomoprhism between them. Despite this approach is not hard in this case, we devise a mechanism
that might be useful in other similar contructions in generic order. The idea is to use the already
collected information on 3-cycles and 4-cycles.

For a given hamiltonian tournament H let G = G(H) be the directed graph whose vertices are the
3-cycles of H. If @ and §3 are vertices of G, set @« — 3 if and only if (e U 3) is a 4-cycle of H and such
that o plays the role of C7 C C. Notice that @ — 3 is equivalent to o and 3 share a common edge in
H and the other vertex of « (outside that edge) preccedes the other vertex of 3. It is not hard to see
the structures of G = G(H) in each case of o € {(13.7), (24.9) }:

O——0O0———0———0
C Cy

O
Figure 14: Graph )
/ 1
O—¢—0—=—10——10
C G g
O

Figure 15: Graph G

The comparison of the above figures shows us that these two graphs, hence their associated hamil-
tonian tournaments, are not isomorphic. This finishes with the Lemma’s proof. O

In [14] J. W. Moon presents a list of drawing that illustrates the nonisomorphic tournaments T,Sf)
(n < 6), with their score vectors, the number of ways of labeling their vertices, and their automorphism
groups (recall that in there, not all the arcs are included in the drawing; if an arc joining two vertices
has not been drawn, then it is to be understood that the arc is oriented from the higher vertex to the
lower vertex). If the tournament is hamiltonian it is denoted by H,(,r), instead of T.,Sr). Comparing his
findings with our conctruction we can state the Lemma:

Lemma 3.3. Keep the notation in [14]. Then H(139) ~ Héss), H{1341) ns H((;n), H(4i) ~ Hém),
F(23:8) o Hé56) and H®9) ~ Hé35).

Following the idea presented in the proof of Lemma 3.2, we denote by G° = G(H?), with ¢ €
{(13.7), (13.42), (14.i7), (23.4¢), (24.7) }, the associated graph of 3-cycles of each of the hamiltonian 6-
tournaments treated in the Lemma. Figures 16, 17 and 18 add up to figures 14, 15, exhibiting the
structure of the graphs G°.

©) O
/ C'1 02\
O\\ /O
O O
Figure 16: Graph G(134)
O > O > O > o

Ch Cy
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Figure 17: Graph G(144)
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Figure 18: Graph G(23-4)

Remark 3.4. Much of the information surveyed on the hamiltonian tournaments is readily available
from the graphs on figures 14 through 18. For instance, the number of 3-cycles and 4-cycles in H?
is obviously the number of vertices and edges, respectively, of G?. Further, the number of vertices of
H? that do not conne a given 3-cycle D € G? is the degree of D as a vertex of G?. In particular,
H®34) hag two non-coned 3-cycles while H (13.9) and H®49) have each of them one non-coned 3-cycle.

The issue of an edge 3 of G7 (i.e., a 4-cycle on H?) joining the vertices C' and D (both of which
are 3-cycles on H?) being coned is not so immediate. If one of the vertices C' or D has outdegree 1
and the other has outdegree 2 then [ is coned as a 4-cycle, for there exists one vertex p € H? that
cones both of C' and D, and hence 8. This is the case of the external edges in G(14%) (Figure 17) and
the first edge on the left on G(139) and G249 (Figures 14 and 15). Similarly, if one of C or D has
outdegree 3 then this 3-cycle is not coned, and so is 3 (though 3 is not minimal in that case). Such
4-cycles happen in G234 G131 and G249, Though if the vertices C' and D both have outdegree 2
it seems unlikely one can tell whether /3 is coned or not without looking at the inner structure of H.

Recall that we denote by N = N (H) (Q = Q(H)) the subtournament of a hamiltonian tournament
H constituted by the neutral (non-neutral) vertices of H. The next table is obtained by a simple
inspection on the structure of these tournaments.

H V(N(H)) | V(QH))
H{349) {a1,a2,2,4} {1,3}
H(IS.u) {alaa2a3$ 4} {1’2}
HU4%) {a1,a2} | {1,2,3,4}
H@34) | f4),09,1,2,3,4} 0
H249) {a1,a2,1,3} {2,4}

Table 1: Neutral and non-neutral vertices

Corollary 3.5. We have: (i) Hém) = Ag and Q = Ay4; (ii) Héas) is a simple tournament and
N =~ Try; (iii) Hé35) is a simple tournament and N = Try; (iv) H((;u) is a simple tournament and
N ~Try;

Summing up, we have the following theorem.

Theorem 3.6. Let Hg be a hamiltonian tournament of order 6, having minimal cycles of length four.
Then:

(1) Hg is unique if it has the mazimal number of non-neutral vertices. Moreover, in this case, Hg is
the bineutral tournament Ag ~ Hém);

(2) Hg is unique if it has four minimal cycles of length 4. This tournament has no minimal cycle of
length 3, and does not have the maximal number of non-neutral vertices. In this case Hg has exactly
two non-neutral vertices and it holds Hg ~ Hé‘u).

(3) Hg is unique if it has three minimal cycles of length 4. This tournament also admits minimal
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cycles of length 3, and all its vertices are neutral. It holds Hg ~ H((SSG).
(4) There are two 6-tournaments having just one minimal cycle of length 4 and admiting minimal

cycles of length 3. Both of them have two non-neutral vertices and they are isomorphic to Hé?’?’) and
H®.
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