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EITHER DIGRAPHS OR PRE-TOPOLOGICAL
SPACES?
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RESUMO: Neste artigo mostramos que os digrafos podem ser identifi-
cados, de um modo natural, com espaços pre-topológicos finitos. Mostramos
também que com esta identificação a Teoria de Homotopia Regular é a mais
apropriada a ser usada quando se trabalha com digrafos. Em particular obte-
mos caracterizações gráficas e estruturais para algumas classes de torneios,
mostrando a importância desta nova abordagem.
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ABSTRACT: In this paper we show that digraphs can be identified,
in a natural way, to finite pre-topological spaces. We also show that with
this identification the Regular Homotopy Theory is the most appropriate
one to be used when dealing with digraphs. We give some combinatorial
applications of the homotopy theory of pre-topological spaces to digraphs. In
particular we get structural and graphical characterizations for some classes
of tournaments, showing the importance of this new approach.

Keywords: Digraphs, Pre-topological spaces, Regular Homotopy for Di-

graphs, Tournaments.
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1. Introduction

In Graph Theory sometimes one has to introduce certain structures
in order to study or to obtain successful applications. In [24], for in-
stance, tournaments are studied using an algebraic approach so that
they are considered as algebras of a special kind.

Sometimes a topological approach is used. Since graphs can always
be realized in the euclidean space, if one is interested in studying them
from a homotopical viewpoint, the usual procedure is to consider them
just as 1-complexes. Demaria and his collaborators used a different
approach, taking in account just the combinatorial data furnished by
the graphs, obtaining what they have called the Regular Homotopy
Theory for Digraphs.

It is known that one can introduce structures in a set which are
weaker than a topology. For example, we can consider certain sets
as pre-topological spaces. Considering the pre-continuous maps we can
construct the corresponding homotopy theory. In this paper we show
that, in a natural way, to any digraph (directed graph) D we can
associate two pre-topological spaces P (D) and P ∗(D). In fact we will
show that the class of the digraphs can actually be identified with the
class of the finite pre-topological spaces. As a matter of fact, the main
purpose of this paper is to stablish the point that a finite pre-topological
space is just a digraph, and vice versa.

Since we have this identification, it seems proper to use the cor-
responding homotopy theory when a digraph is considered as a pre-
topological space in order to study them from a homotopical point of
view. In this paper we will show that this homotopy theory is exactly
that introduced by Demaria. Moreover we shall present several appli-
cations, showing this new approach is relevant and effective leading to
some important new results.

In section 2, we give the basic definitions, the notation and we prove
the equivalence between the class of the digraphs and the class of the
finite pre-topological spaces.

In section 3, we present a summary of the Regular Homotopy for Di-
graphs, which was introduced by D. C. Demaria and his collaborators,
showing that it coincides with the homotopy theory for pre-topological
spaces, since the o-regular maps are just the pre-continuous maps.

In the last four sections we present several recent results, showing
how this identification of digraphs with finite prespaces and the proper
use of the corresponding homotopy theory has led to important the-
orems characterizing certain families of tournaments and digraphs, as
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well as many positive results on the reconstruction problem for tour-
naments.

2. Pre-topological Spaces and Digraphs

We shall recall some basic definitions and properties of pre-
topological spaces. The terminology is fairly standard following [12,24].

Definition 2.1. Let S be a non-empty set. For every x ∈ S, let Fx

be a filter on S such that {x} ≤ Fx, where {x} is the filter generated
by {x}. We call the filter Fx the neighborhood filter of the point x.
The collection P = {Fx} (x ∈ S) is said to be a pre-topology on S and
the pair P = (S,P) a pre-topological space or prespace. The prespace
P is called principally filtered or p.f. prespace if each filter Fx ∈ P is
principal.

It is obvious that any topological space is also a prespace.

Remark 2.1. If for every A ⊆ S we put cl(A) = {x ∈ S |Fx ∧ A 6= ∅},
then we have defined a closure operator on S. In this way a prespace
becomes a C̆ech closure space (see [12,13]). The converse is also true.

To introduce pre-continuous maps between prespaces we follow the
same process as to define continuous maps between spaces.

Definition 2.2. Let P = (S,P) and P ′ = (S ′,P ′) be two given
prespaces. A map f : S → S ′ is said to be pre-continuous if, for every
x ∈ S, we have f(Fx) ≤ F ′f(x), where f(Fx) is the f -image of the filter
Fx.

Remark 2.2. If we consider P and P ′ as closure spaces then we have
the following result:

f : S → S ′ is precontinuous if and only if
(∀A′ ⊆ S ′) (∀B′ ⊆ S ′) A′ ∩ cl(B′) = ∅ ⇒ f−1(A′) ∩ cl(f−1(B′)) = ∅.

The next definition shows how one can associate, in a natural way,
to any given digraph D two prespaces P (D) and P ∗(D).

Definition 2.3. Let S be a finite non-empty set and A a set of ordered
pairs (x, y) ∈ S × S, such that x 6= y. We say the pair D = (S,A) is
a directed graph or digraph. The elements of S are the vertices of D,
the cardinality of S the order of D and the elements of A the arcs of
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D. Moreover we write x→ y instead of (x, y) and in this case we call x
a predecessor of y and y a successor of x. By D∗ we shall denote the
dual digraph D∗ = (S,A∗), where (x, y) ∈ A∗ if and only if (y, x) ∈ A.

Definition 2.4. Let D = (S,A) and D′ = (S ′,A′) be two digraphs. A
map f : S → S ′ is said to be a homomorphism between the digraphs
D and D′ if, for every x, y ∈ S, x→ y we have either f(x)→ f(y) or
f(x) = f(y).

Definition 2.5. Let D = (S,A) be a digraph. We call prespaces as-
sociated to D the two prespaces P (D) = (S,P) and P ∗(D) = (S,P∗),
where the pretopologies P = {Fx} (x ∈ S) and P∗ = {F ∗x} (x ∈ S) are
defined in the following way, respectively:

For every vertex x ∈ S, we consider the neighborhoods:
A(x) = {x} ∪ {y ∈ S |x→ y} and A∗(x) = {x} ∪ {y ∈ S | y → x},

then we put Fx = A(x) and F ∗x = A∗(x).

Thus given a digraph D we can, in a natural way, introduce a
structure of prespace. We now will describe how a finite prespace can
be considered as a digraph, also in a natural way.

The next definition shows how one can associate, in a natural way,
to any given finite prespace P two digraphs D(P ) and D∗(P ).

Definition 2.6. Let P = (S,P) be a finite prespace. One can in a
natural way associate to P two digraphs D(P ) = (S,A) and D∗(P ) =
(S,A∗), which are dually directed. In fact every filter Fx(x ∈ S) is a

principal filter Ax of base Ax and, for x ∈ S, y ∈ S, x 6= y, y ∈ Ax, we
put x→ y or y → x, respectively. The digraphs so obtained are called
the digraphs associated to P .

In particular we have P (D) = P ∗(D) if and only if D = D∗: in this
case D may be considered an undirected graph.

Definition 2.7. We observe that any homomorphism between two
digraphs D and D′ is a precontinuous map between the prespaces
P (D) and P (D′) (or (P ∗(D) and P ∗(D′)), and vice versa.

Theorem 2.1. The class of all digraphs can be identified, in a natural
way, with the class of all finite prespaces.
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Proof. The result follows immediately from the last two definitions.
In fact, if we start with a given digraph D, then take its associated
prespace P (D) and then take the associated digraph D(P (D)) we re-
cuperate again the digraph D. On the other hand, starting with a
given prespace P , then taking its associated digraph D(P ) annd then
the associated prespace P (D(P )) we get again the prespace P . �

3. Regular Homotopy Theory for Digraphs

Demaria and his collaborators, in order to introduce the Regular
Homotopy Theory for Digraphs, they had to define the concept of o-
regular (and o∗-regular) maps. We shall describe here an outline of
their theory (see [2, 3, 4, 5]).

Definition 3.1. A function f : P → D between a prespace P and
a digraph D is o-regular (o∗-regular) if and only if, for each pair of
different vertices x and y of D such that x 6→ y, we have: f−1(x) ∩
cl (f−1(y)) = ∅ (cl(f−1(x)) ∩ f−1(y) = ∅).

Definition 3.2. We say two o-regular (o∗-regular) functions f and f ′

are o-homotopic (o∗-homotopic) if there exists a homotopy from f to
f ′ which is an o-regular (o∗-regular) function.

Definition 3.3. In definition 3.1, if we take P to be In, the n-cube
and we consider the homotopic classes of n-loops on (D, x) which are
o-regular (o∗-regular), then we obtain the homotopy groups which are
called the o-regular (o∗-regular) homotopy n-groups of the digraph D at
the vertex-base x. These groups are denoted by Qn(D, x) (Q∗n(D, x)).

Remark 3.1. The homotopy groups Qn(D, x) and Q∗n(D, x) of a weakly
connected digraph D do not depend on the vertex-base x. So we denote
them by Qn(D) and Q∗n(D).

As we have seen in the previous section, digraphs are actually
finite prespaces. So the natural homotopy theory to be done on a
digraph should be the one that comes naturally from this identification.

As a matter of fact, one can develop a homotopy theory for prespaces
which is similar to the classical one for topological spaces. To this
purpose we call n-paths of the prespace P the pre-continuous maps
f : In → P . For the rest we have only to replace the terms “topological
space” and “continuous map” respectively by “prespace” and “pre-
continuous map”. Therefore, given a prespace P and a point x ∈ P ,
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we can construct the homotopy groups πn(P, x) of P at the point-base
x.

The next proposition show that this homotopy theory and that ob-
tained by Demaria are exactly the same.

Proposition 3.1. Let P be a prespace and D a digraph. Let P (D)
be the prespace associated to D. A function f : P → D is o-regular
(resp.o∗-regular) if and oly if f is a precontinuous map between the
prespaces P and P (D) (resp. P and P ∗(D)).

Proof. The result follows from the definition of the pre-topological
structure on P (D) (resp. P ∗(D)) and the the fact that a map f : P →
D between a prespace P and a digraph D is o-regular (o∗-regular) if and
only if, for each pair of different vertices x and y of D such that x 6→ y,
we have: f−1(x) ∩ cl (f−1(y)) = ∅ (cl(f−1(x)) ∩ f−1(y) = ∅) �

Remark 3.2. This result is in fact saying that the homotopy groups
πn(P (D), x) (πn(P ∗(D), x)) are isomorphic to the o-regular (o∗-
regular) homotopy groups of the digraph D at the vertex-base x,
Qn(D, x) (Q∗n(D, x)).

Given D a weakly connected digraph, the regular homotopy groups
Qn(D) and Q∗n(D) can be calculated using the classical homotopy
groups πn(|KD|) of a suitable polyhedron KD, since the following the-
orems hold:

Theorem 3.1. The homotopy groups Qn(D) and Q∗n(D) are isomor-
phic (see [5]).

Theorem 3.2. Qn(D) is isomorphic to the classical homotopy group
πn(|KD|) of the polyhedron of a “suitable” simplicial complex KD as-
sociated with D (see [6]).

We shall describe shortly how to get this suitable simplicial complex
KD.

If H ⊂ D we say H is headed if there exists a vertex v in H such
that v → H \ v. And H is said to be totally headed if for every A ⊂ H
with A 6= ∅, we have that A is headed. The simplexes in KD are the
ones generated by the totally headed subdigraphs of D.

The proof of these two theorems is hard and very long (see [2, 3, 4,
5, 6]). We just say that the first step is to prove some propositions
(the normalization theorems), which are similar to the simplicial ap-
proximation theorems for continuous maps between polyhedra, which
allow to choose special representatives in each regular homotopy class.
Finally, using them we the desired isomorphism is obtained.
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We give some examples of digraphs and their corresponding associ-
ated polyhedra.

1. If D is the undirected graph of the edges of a triangle, |KD| is
homeomorphic to E2 (the full disk) and Qn(D) = 0 (n ≥ 1).

2. If D is the undirected graph of the edges of a square, |KD| is
homeomorphic to S1 (the circle) and Qn(D) ' πn(S1).

3. If D is the digraph with vertices a, b, c and arcs
a→ b, b→ c, c→ a, |KD| is also homeomorphic to S1.

4. If D is the undirected graph of the edges of a tetrahedron, |KD|
is homeomorphic to E3 and Qn(D) = 0 (n ≥ 1).

5. If D is the undirected graph of the edges of an octahedron, |KD|
is homeomorphic to S2 (the sphere) and Qn(D) ' πn(S2).

6. If D is the digraph with vertices a, b, c, d and arcs a → b, b →
c, c → d, d → a, b → d, d → b, a → c, c → a, |KD| is also
homeomorphic to S2.

4. Tournaments

In this section we recall some results and definitions for the special
case in which the digraph D is a tournament.

Definition 4.1. A digraph D is called a tournament if every pair of
different vertices of D is joined by one and only one arc. A tournament
T is called hamiltonian if it contains a spanning cycle, i.e. a cycle
through all the vertices of T .

Definition 4.2. A tournament T is called regular if, for each vertex
x ∈ T , the number of the predecessors and successors of x is the same
(hence the order of T is odd). A tournament T is called highly regular
if there exists a cyclical ordering x1, x2, . . . , x2m+1, x1 on the vertices of
T such that xi → xj if and only if xj is one of the first m successors of
xi in the cyclical ordering of T .

Every tournament can be endowed with an algebraic structure, in a
natural way (see [28]). In fact:

Proposition 4.1. A tournament T becomes the commutative groupoid
A(T ) (see [7]) if we define the following binary operation ◦:

(∀x, y ∈ T ) x ◦ y = y ◦ x =

{
x, if x→ y or x = y ;
y, if y → x.

Proof. See [28]. �

135



ISSN: 1984 – 8625 – número 6 – IFSP - Sertãozinho

Remark 4.1. Similarly we can associate with T the dual commutative
groupoid A∗(T ), defining:

(∀x, y ∈ T ) x ◦ y = y ◦ x =

{
x, if x→ y or x = y ;
y, if y → x.

Remark 4.2. Every homomorphism between two tournaments T and T ′

is also an algebraic homomorphism between the commutative groupoids
A(T ) and A(T ′) (A∗(T ) and A∗(T ′)), and vice versa.

Let Tn and T ′m be two tournaments of order n and m, respec-
tively, and p : Tn → T ′m a surjective homomorphism. We have that
the groupoid A(T ′m) is isomorphic to the quotient A(Tn)/p. Therefore,
considering the m preimages of the vertices y1, y2, . . . , ym of T ′m and
putting S(i) = p−1(yi) for each i = 1, 2, . . . ,m, we can partition the
n vertices of Tn into m disjoint subtournaments S(1), S(2), . . . , S(m) of
equivalent vertices. Moreover, if yi → yj we get S(i) → S(j), where
S(i) → S(j) means that the vertices of S(i) are all predecessors of all
the vertices of S(j).

Definition 4.3. Under the same assumptions, we write Tn =
T ′m(S(1), S(2), . . . , S(m)) and call Tn the composition of the m tour-
naments S(1), S(2), . . . , S(m) with the tournament T ′m. The subtourna-
ments S(1), S(2), . . . , S(m) are the components of Tn and the tournament
T ′m is called a quotient of Tn.

A tournament Tn is said to be simple if the composition Tn =
T ′m(S(1), S(2), . . . , S(m)) implies either m = 1 or m = n.

The following properties hold.

Proposition 4.2. For every non-trivial tournament T there is pre-
cisely one non-trivial simple quotient tournament T ∗, called the simple
quotient tournament related to T .

Remark 4.3. For h ≥ 3, where h is the order of T ∗, there is precisely
one partition of the vertices of T into h components. Whereas, for
h = 2 the partition is not unique.

Remark 4.4. Let T be a tournament and T ′ a quotient tournament of
T . Then there exists a subtournament T ∗ of T isomorphic to T ′.

Proposition 4.3. A tournament is hamiltonian if and only if every
one of its non-trivial quotient tournaments is hamiltonian.
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5. Simply Disconnected Tournaments

Now we present the characterization given by Burzio and Demaria
(see [7, 8]) for the class of tournaments, whose fundamental group is
non-trivial.

Definition 5.1. A tournament T is called simply connected (simply
disconnected) if its first homotopy group Q1(T ) is trivial (non-trivial).

Remark 5.1. Since T is weakly connected, the fundamental group is
independent of the choice of the vertex base, allowing us to use the
notation Q1(T ).

To obtain Q1(T ) we note that Q1(T ) is isomorphic to π1(|KT |),
where KT is the complex whose vertex set is T and whose sim-
plexes are spanned by the transitive subtournaments of T . Moreover
π1(|KT |) can be calculated by using edge-loops made up of edges of KT .

In detail, we must remember that an edge-loop, based at a vertex
x of KT , is a sequence xx1x2 . . . xkx of vertices of KT , in which each
consecutive pair xixi+1 spans a simplex of KT .

Two edge-loops, based at x, are homotopic if we can obtain one
from the other by a finite number of the following operations:

1. a repeated vertex yy can be changed to y and vice versa;

2. if three consecutive vertices wyz span a simplex of KT , they
may be replaced by the pair wz and vice versa.

The set of equivalent classes of edge-loops, based at x, becomes
a group under the multiplication:

{xx1x2 . . . xkx}{xy1y2 . . . xhx} = {xx1x2 . . . xkxxy1y2 . . . yhx},

which is isomorphic to π1(|KT |).

In this case, since T is a tournament, any pair of different
vertices of T generates a 1-simplex of KT and any transitive subtour-
nament of order 3 of T a 2-simplex of KT .

A structural characterization for the simply disconnected
tournaments is obtained in the following theorem (see [8]).
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Theorem 5.1. A tournament T is simply disconnected if and only if
its simple quotient tournament is highly regular.

Proof. The proof of this theorem is obtained in three steps.
S1. A tournament T is simply disconnected if and only if every

one of its non-trivial quotients T ′ is simply connected.

In fact, by identifying T ′ as a subtournament T ′′ of T and by
choosing a vertex x ∈ T ′′ as the vertex-base, each edge loop of |KT | is
homotopic to is projection on |KT ′′ | ⊆ |KT |.

S2. A non-trivial highly regular tournament T2m+1 is simply
disconnected.

For m = 1, T3 is the 3-cycle and |KT3| = S1. So
Q1(T3) = π1(S

1) ∼ ZZ.
We show that |KT2m−1| is a deformation retract of |KT2m+1|, by

using the following topological tools.

Lemma 5.1. If X is a deformation retract of a topological space S and
Y a deformation retract of X, then Y is a deformation retract of S.

Lemma 5.2. Let S be a topological space, X and Y two closed sub-
spaces of S, such that X ∪ Y = S. If Z is a deformation retract of Y ,
such that X ∩ Y ⊆ Z, then X ∪ Z is a deformation retract of S.

Hence, by induction on m, we prove that the polyhedron |KT3| = S1

is a deformation retract of |KT2m+1|. So we have Q1(T2m+1) ∼ ZZ.

S3. The simple quotient tournament related to a simply
disconnected tournament is highly regular.

This proposition is proved by using induction on the order
n (n ≥ 3) of the tournament T .

For n = 3, let T3 be simply disconnected. Then T3 is the 3-cycle
and it is also highly regular. Therefore it coinc ides with its simple
quotient.

Assume that, for each simply disconnected tournament Tn, the
simple quotient tournament T ′ related to Tn is highly regular. Consider
a simply disconnected tournament Tn+1. Then for a suitable ordering
x1, x2, . . . , xn+1 of the vertices of Tn+1 the edge-loop x1x2x3x1 is not
nullhomotopic in |KTn+1|. The same edge-loop is not nullhomotopic in
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|KTn|, where Tn = Tn+1 − xn+1.
By the inductive hypothesis, the simple quotient tournament T ′

related to Tn is highly regular.
Finally, by considering the orientation of the arcs between xn+1

and any vertex xi ∈ Tn, it results that the simple quotient tournament
of Tn+1 is also highly regular.

From steps 1,2 and 3 it follows the theorem. �

As a consequence we have the following:

Proposition 5.1. A simply disconnected tournament is hamiltonian.

In [7] Burzio and Demaria also gave a graphical characterization
for the simply disconnected tournaments. At first, we observe that
a cycle whose edge-loop becomes the base of a cone in the associate
polyhedron is clearly nullhomotopic. In particular a cycle, whose ver-
tices are included in a component of the tournament, is nullhomotopic.
So we put the following definitions:

Definition 5.2. Let C be a cycle of a tournament T. C is said to be
coned by a vertex x if there exist a vertex x ∈ T − C such that either
x→ C or C → x. Otherwise C is said to be non-coned.

In this way Burzio and Demaria characterized the simply dis-
connected tournaments by considering their 3-cycles in the following
theorem.

Theorem 5.2. A tournament T is simply disconnected if and only if:

1. there exists a non-coned 3-cycle in T ;
2. each coned 3-cycle of T is included in a component of T .

Proof. If the tournament T is simply disconnected, T includes some
non-coned 3-cycles, since every non-nullhomotopic 3-cycle is non-coned
too.

Moreover each coned 3-cycle C of T must be included in a com-
ponent of T . Otherwise the projection of C in the simple quotient
tournament related to T is a 3-cycle C ′ of a highly regular tournament
and C ′ is not coned. But this is a contradiction.

The converse is obtained by using induction on the order n (n ≥ 3)
of the tournament T and by following the proof of Theorem 5.1, step
3. �
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6. Simply Disconnected Semicomplete Digraphs

In this section we generalize Theorem 5.1 and 5.2 to semicom-
plete digraphs (see [16]).

Definition 6.1. Let D be a digraph. A pair of different vertices x, y
of D is said to be symmetric if there are both arcs x → y and y → x
in D.

Definition 6.2. A digraph D is said to be semicomplete if every pair
of different vertices of D is joined by at least one arc.

Every tournament is obviously a semicomplete digraph too.

Remark 6.1. Given a complete digraph Dn of order n, there exists at
least a tournament Tn of order n, which is a subdigraph of Dn. In fact
it is sufficient to delete an arc from each symmetric pairs of Dn.

As in the case of tournaments a semicomplete digraph D can also be
endowed with an algebraic structure, since D becomes a groupoid, by
putting:

(∀x, y ∈ D) x ◦ y =

{
x, if x→ y or x = y;
y, if y → x and x 6→ y.

So we can consider quotients of complete digraphs and we obtain
results similar to the ones presented in section 3. The main difference
between tournaments and digraphs, in this case, is the fact that for
digraphs homomorphisms do not correspond to algebraic homomor-
phisms as it is so for tournaments.

Definition 6.3. A semicomplete digraph D is called simply connected
(simply disconnected) if the first homotopy group Q1(D) of D is trivial
(non-trivial).

Then we get the following generalization of Theorem 5.1

Theorem 6.1. A semicomplete digraph D is simply disconnected if
and only if its simple quotient is a highly regular tournament.

Proof. If the simple quotient of D is highly regular, D is simply dis-
connected by steps 1 and 2 of Theorem 1 of the previous section.

If the simple quotient of D is not highly regular, we can show that
D is simply connected by using the following

�
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Lemma 6.1. Let Dn and D′n be semicomplete digraphs of the same
order n such that D′n is a subdigraph of Dn. If D′n is simply connected,
then Dn is simply connected too.

We also have the generalization of Theorem 5.2, given by the
following theorem.

Theorem 6.2. A semicomplete digraph D is simply disconnected if
and only if:

1. there exists a non-coned 3-cycle in D;
2. each symmetric pair and each coned 3-cycle of D are included in

a component of D.

7. Final Remarks

In this last section we shall present some results, showing how
this new approach to study digraphs from a homotopical viewpoint
has brought some freshness to this area, specially in the case of
hamiltonian tournaments.

For instace, taking a closer look at the concept of coned cycles
in a tournament T , we will show how this concept relates to some of
the homotopical properties of T .

First of all, we recall that for a tournament T the simpli-
cial complex KT associated is such that its 0-simplices are given
by the vertices ot T , and all other simplices are given as follows:
S = (v1, . . . , vn) ∈ KT if and only if the subtournament < v1, . . . , vn >
induced by the vertices v1, . . . , vn is transitive.

Now let a cycle C : v1 → v2 → · · · → vr → v1 be coned by a
vertex v in T ; let us say for instance that C → v.

We can see that all the subtournaments Si =< vi, vi+1, v > with
vi, vi+1 in C, are all transitive. Therefore (vi, vi+1, v) ∈ KT and hence
the cycle C is nullhomotopic.

If C is a non-coned cycle instead, then we do not have this
situation. An important application of the concept of non-coned cycle
was given by Burzio and Demaria in [9]. We have the following:
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Theorem 7.1. A tournament Hn (n ≥ 5) is hamiltonian if and only
if there exists an m-cycle C, with 3 ≤ m ≤ n − 2, which is non-coned
in Hn.

Proof. Let us suppose Hn is hamiltonian. Let v be a neutral vertex
of Hn and v1, v2 two neutral vertices of Hn \ v. Let us suppose by
contradiction that the two hamiltonian subtournaments Hn \ {v, v1}
and Hn \ {v, v2} are both coned. Since v1 cannot cone Hn \ {v, v1}
(otherwise Hn \ {v, v1} is not hamiltonian), and v2 cannot cone Hn \
{v, v2} (otherwiseHn\{v, v2} is not hamiltonian), then bothHn\{v, v1}
and Hn \ {v, v2} are coned by v. Hence v cones Hn \ v, which is a
contradiction since Hn is hamiltonian. Therefore at least one of the
two subtournaments Hn \ {v, v1} and Hn \ {v, v2} is non-coned. In
other words, in Hn there exists at least one non-coned (n − 2)-cycle.
Conversely, if Tn is not hamiltonian, then its simple quotient is T2.
Hence every cycle of Tn is included in an e-component, and therefore
it is coned. �

Remark 7.1. Also H3 and H4 contain non-coned m-cycles, but in this
case the condition m ≤ n− 2 is not satisfied.

If C is a non-coned cycle of Hn and v 6∈ V (C), then it is possible
to extend C to a cycle through all the vertices of Hn \ v. This fact
motivated Burzio and Demaria to define:

Definition 7.1. Let Hn be a hamiltonian tournament. A vertex v of
Hn is called a neutral vertex of Hn if Hn\v is hamiltonian. The number
of the neutral vertices of Hn is denote by ν(Hn).

Remark 7.2. We observe that ν(Hn) is also the number of hamiltonian
subtournaments of order n − 1, so we have that ν(Hn) ≤ n, for we
can have at most n subtournaments of order n − 1. On the other
hand, in [22] Moon proved that the minimum number of k-cycles, with
3 ≤ k ≤ n, in a hamiltonian tournament Hn is equal to n − k + 1.
Hence we have that ν(Hn) ≥ 2, if n ≥ 4. Therefore, we have that
2 ≤ ν(Hn) ≤ n, for n ≥ 4.

Definition 7.2. Let C be a non-coned cycle of Hn. The set Pc =
V (Hn) \ V (C) consists of neutral vertices of Hn, and these are called
poles of C. A non-coned cycle C of Hn is said to be minimal if every
cycle C ′, such that V (C ′) ⊂ V (C), is coned by at least one vertex of Hn.
A minimal cycle is said to be characteristic if it possesses the shortest
length of the minimal cycles. The length of a characteristic cycle is
called the cyclic characteristic of Hn and it is denoted by cc(Hn). The
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difference n−cc(Hn) is called the cyclic difference of Hn and is denoted
by cd(Hn).

We observe that if C is a characteristic cycle of Hn, then
cd(Hn) = |Pc|.

Using these definitions and the result given in Theorem 5.5,
Burzio and Demaria in [7] gave a classification for the collection Hn

of all the hamiltonian tournaments of order n ≥ 5, subdividing it in
n− 4 different classes. Namely, the first class of cyclic characteristic 3
is formed by the tournaments which contain a non-coned 3-cycle; the
second one of cyclic characteristic 4 consists of the tournaments which
contain a non-coned 4-cycle and whose 3-cycles are all coned. And so
on, till the (n-4)th class of cyclic characteristic (n-2) which consists
of the tournaments containing a non-coned (n − 2)-cycle and whose
cycles with lower length are all coned.

Formally we have the following:

Theorem 7.2. Let Hn, with n ≥ 5, be a hamiltonian tournament, then
2 ≤ cd(Hn) ≤ n− 3 (or equivalently 3 ≤ cc(Hn) ≤ n− 2). Conversely,
for every n ≥ 5 and for every h such that 2 ≤ h ≤ n − 3, there exist
hamiltonian tournaments Hn with cd(Hn) = h.

This classification theorem for the hamiltonian tournaments has
led to some important recent results, due to the fact this new invariant
cc(Hn) (cyclic characteristic) can be obtained in a combinatorial way
(just using the adjacency data) and it has some nice properties, like
the one given in the next proposition.

Proposition 7.1. If a tournament Tn is the composition
Rm(S(1), S(2), . . . , S(m)), then cc(Tn) = cc(Rm).

These results have allowed to obtain the structural characteri-
zation of some important classes of hamiltonian tournaments.

Demaria and Gianella defined Tn to be a normal tournament
if it is hamiltonian and has a unique characteristic cycle. In [14] they
throughly studied this class of tournaments, which turned out to be
very important to obtain structural characterization theorems for
other classes of tournaments (see [17, 20, 21]).
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We present here some of the most important properties of the
normal tournaments.

Definition 7.3. The tournament An, with n ≥ 4, such that V (An) =
{a1, a2, . . . , an} and V (An) = {ai → aj : j < i− 1orj = i+ 1}, is called
the bineutral tournament of order n. If n = 3, we put A3 to be the
3-cycle.

In [14] Demaria and Gianella have also shown that a normal
tournament Hn has as its characteristic cycle either the 3-cycle A3

or a bineutral tournament Ak (n ≥ 4). In the same paper they have
proved the following:

Proposition 7.2. Let Hn be a normal tournament with cyclic char-
acteristic k (k ≥ 3) and let Ak be its characteristic cycle. A pole z,
associated to Ak, must have the following adjacencies with respect to
Ak:

1. (ai+1, ai+2, . . . , ak)→ z → (a1, a2, . . . , ai) (1 ≤ i ≤ k − 1).
2. (ai, ai+2, ai+3, . . . , ak)→ z → (a1, . . . , ai−1, ai+1) (1 ≤ i ≤ k− 1).

Definition 7.4. The pole z is called a pole of kind i and class 1 or
class 2 (and denoted by xi or yi) if its adjacencies are given by the
previous conditions 1) or 2), respectively.

The class of the normal tournaments is very important in the
study of the hamiltonian tournaments, for instance, the class of the
hamiltonian tournaments which have a unique n-cycle, which was
characterized by Douglas (see [19]), can now be characterized in a
different way as it is shown in the next proposition.

Proposition 7.3. Let Hn be a hamiltonian tournament with cc(Hn) =
k ≥ 3. Hn is a Douglas tournament if, and only if:

1.1) Hn has as a simple quotient Qm (m ≥ 5) such that:
a) Qm is normal;
b) the subtournament of the poles in Qm is transitive;
c) the poles of Qm are all of class 1;
d) between two poles xi and x

′
j of Qm of class 1, the following rules of

adjacies hold xi → x
′
j implies j ≤ i+ 1.

1.2) Hn can be constructed from Qm by replacing all the vertices of
Qm, but the vertices a2, . . . , ak−1 of its charcteristic cycle Ak, by some
transitive tournament.
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2) Hn is the composition of a singleton and two transitive tourna-
ments with a 3-cycle.

(See [17])
Later Demaria and Kiihl, using this characterization and

the structural characterization ofthe normal tournaments given in
Proposition 6.2, obtained the enumeration of the Douglas tournaments
with a convenient variation of the Pascal triangle (see [18]).

Recently Demaria, Guido and others (see [15], [20], [21] and
[22]) have used the concept of non-coned cycles in order to approach
the reconstruction problem for tournaments. It is known (see [229,
30]) that the reconstruction conjecture fails for tournaments. Then
the challenge is to find a characterization (if any) of reconstructable or
non-reconstructable tournaments. In this context the reconstruction of
combinatorial properties and invariants of tournaments certainly are
very useful. In [22] Guido and Kiihl computed the cyclic characteristic
of all known tournaments which are non-reconstructable. It is early
to say but it seems there might be some direct link between recon-
structable hamiltonian tournaments and their cyclic characteristic. In
fact, as it is pointed out in [22], no non-reconstructable tournament is
known having cc(H) > 4.

References

[1] BEINEKE, L. W. and REID, K. B., Tournaments–Selected Topics in
Graph Theory, Edited by L. W. Beineke and R. J. Wilson, Academic
Press, New York (1978), 169–204.

[2] BURZIO M. and DEMARIA D.C., A normalization theorem for regular
homotopy of finite directed graphs, Rend. Circ. Matem. Palermo, (2),
30 (1981), 255–286.

[3] BURZIO M. and DEMARIA D.C., The first normalization theorem
for regular homotopy of finite directed graphs, Rend. Ist. Mat. Univ.
Trieste, 13 (1981), 38–50.

[4] BURZIO M. and DEMARIA D.C., The second and third normalization
theorem for regular homotopy of finite directed graphs, Rend. Ist. Mat.
Univ. Trieste, 15 (1983), 61–82.

[5] BURZIO, M. and DEMARIA, D. C., Duality theorem for regular homo-
topy of finite directed graphs, Rend. Circ. Mat. Palermo, (2), 31 (1982),
371–400.

[6] BURZIO, M. and DEMARIA, D. C., Homotopy of polyhedra and regu-
lar homotopy of finite directed graphs, Atti II◦ Conv. Topologia, Suppl.
Rend. Circ. Mat. Palermo, (2), n◦ 12 (1986), 189–204.

145



ISSN: 1984 – 8625 – número 6 – IFSP - Sertãozinho

[7] BURZIO, M. and DEMARIA, D. C., Characterization of tournaments
by coned 3–cycles, Acta Univ. Carol., Math. Phys., 28 (1987), 25–30.

[8] BURZIO, M. and DEMARIA, D. C., On simply disconnected tourna-
ments, Proc. Catania Confer. Ars Combinatoria, 24 A (1988), 149–161.

[9] BURZIO, M. and DEMARIA, D. C., On a classification of hamiltonian
tournaments, Acta Univ. Carol., Math. Phys., 29 (1988), 3–14.

[10] BURZIO, M. and DEMARIA, D. C., Hamiltonian tournaments with
the least number of 3-cycles, J. Graph Theory 14 (6) (1990), 663–672.
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